
Selectively Traceable Anonymity

Luis von Ahn1, Andrew Bortz2, Nicholas J. Hopper3, and Kevin O’Neill4

1 Carnegie Mellon University, Pittsburgh, PA USA
2 Stanford University, Palo Alto, CA USA

3 University of Minnesota, Minneapolis, MN USA
4 Cornell University, Ithaca, NY USA

Abstract. Anonymous communication can, by its very nature, facili-
tate socially unacceptable behavior; such abuse of anonymity is a serious
impediment to its widespread deployment. This paper studies two no-
tions related to the prevention of abuse. The first is selective traceability,
the property that a message’s sender can be traced with the help of an
explicitly stated set of parties. The second is noncoercibility, the prop-
erty that no party can convince an adversary (using technical means)
that he was not the sender of a message. We show that, in principal, al-
most any anonymity scheme can be made selectively traceable, and that
a particular anonymity scheme can be modified to be noncoercible.

1 Introduction

Anonymous communication has several important potential applications, in-
cluding anonymous email for “whistle-blowing,” anonymous web browsing to
access useful but possibly embarrassing or incriminating information (e.g., “how
to deal with a drug addiction”), and mechanisms to ensure individual privacy
in electronic transactions. At the same time, there are obvious ways in which
anonymity protocols could be used for antisocial or criminal purposes such as
slander, threats, and transfer of illegal content. In some cases, especially when the
anonymity guarantees are strong, the negative consequences of allowing users to
communicate anonymously can outweigh the benefits. This is a potential stum-
bling block for the widespread adoption of anonymizing systems.1

Systems for anonymous communication have generally tried to provide the
strongest possible guarantees while providing some reasonable level of efficiency
and ease-of-use, but, surprisingly, have usually not addressed “revoking” the
anonymity of a message in a formal manner.2 In this paper we argue that it
would be useful to have anonymity protocols that explicitly allow the tracing of
1 We note that there are naturally other stumbling blocks to the widespread adoption

of current anonymity systems, such as ease-of-use, ease-of-installation, and public
awareness.

2 One exception is the mechanisms in various anonymous cash and election protocols
that allow revoking the anonymity of a user who double-spends or double-votes.

G. Danezis and P. Golle (Eds.): PET 2006, LNCS 4258, pp. 208–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Selectively Traceable Anonymity 209

a message’s sender whenever a set of fair and sensible conditions is met.3 To this
effect, we define selectively traceable anonymous communication, which allows
tracing a message when a tracing policy is satisfied, such as a fixed fraction of
the participants voting to trace the message.

Another reason for examining tracing in anonymity protocols is that some
existing anonymity protocols already allow a slightly different form of tracing by
allowing participants to prove that they did not send some particular message.
If a protocol has this property, we call it coercible, because participants can be
coerced into proving that they did not send a particular message. Coercibility is
related to tracing in that a coercible protocol allows gradual and uncoordinated
tracing: every participant except the sender can show that they did not send
the message. If the anonymity set of a message is small, this can be easier than
tracing through other means. The notion of uncoercible anonymity is similar to
the notions of coercibility in election protocols [18], deniability in encryption [7],
and adaptive security in multiparty computation [8].

We present two definitions of traceable anonymity. In one, which we refer to
as weak traceable anonymity, a message should be traced whenever the tracing
policy is satisfied; in the other, strong traceable anonymity, nothing about the
sender of a message should be learned unless the tracing policy is satisfied.
To clarify the distinction between these definitions, we mention that a weak
traceable protocol can be coercible: the message can be traced when the tracing
policy is satisfied, but something about the identity of the sender can be revealed
even if the tracing policy is not satisfied if any participants prove that they did
not send the message. A strong traceable protocol does not allow such coercion.

In this paper, we present definitions and several technical results relating to
selectively traceable anonymous communication. Our technical results include:

A generic transformation that adds selective traceability. We show that
a large class of systems for anonymous communication can, in principle, be trans-
formed into systems with selectively traceable anonymity, using a construction
that first appears in [20]: append an anonymous “group signature” to every
message sent on an anonymous channel and require the receivers to drop all
messages that are not signed. We note that this transformation suffers from an
incentive problem: receivers have no incentive to drop unsigned messages, and
thus senders have no incentive to sign messsages. We show that, in principle, al-
most any anonymity scheme can be transformed to avoid this problem without
sacrificing anonymity.

Two efficient transformations from specific DC-Net-like protocols. We
show efficient transformations from two specific DC-Net-based protocols: [1,15].
The transformations do not affect the efficiency of the underlying non-traceable
protocols and yield security against malicious adversaries.

3 We note that in some situations, such extreme remedies may not be required. It is an
interesting question to determine what conditions allow weaker solutions to counter
abuse.

210 L. von Ahn et al.

Coercibility results. We discuss the notion of coercibility in anonymous com-
munication, and show how the DC-Net-based protocols in [1,15] allow coercion.
We show a simple modification to the [1] protocol that gives noncoercibility. We
also show that our generic transformations do not alter the coercibility (or non-
coercibility) of the underlying protocols. These results show that, in principle,
strong traceable anonymity can be acheived.

2 Threshold Cryptography and Group Signatures

We use two main building blocks for the technical results that follow: threshold El
Gamal decryption and group signatures. The first technique generalizes El Gamal
encryption so that private keys are distributed among a number of principals;
the second provides a way for a principal to sign a message anonymously in such
a way that the signer’s anonymity can be revoked by the group manager.

Distributed El Gamal Decryption [21]. We will use a public-key encryption
system to encrypt information that identifies the sender of a message. To do so
in a way that respects a particular tracing policy, however, we want decryption
to occur only when all the voters in some tracing set T agree to take part. In
other words, we require a cryptosystem with the following features:

1. There is an “aggregate” public key y that can be used to encrypt messages,
as with regular public-key cryptosystems.

2. Each voter vi has a secret private key xi that can be used to “partially”
decrypt a ciphertext C, and decryption is computationally hard unless all
the voters in some tracing set T take part in the decryption.

Group Signatures. Group signature schemes [12] provide a way for members
of a group to sign messages anonymously. That is, they allow a member of a
group to digitally sign a document in such a way that it may be verified that
the document was signed by a group member, but not which particular group
member signed it unless a designated group manager “opens” the signature.

Definition 1 (From [3]). A group signature scheme is a digital signature
scheme comprised of the following five procedures:

– SETUP outputs the initial group public key GPK (including all system pa-
rameters) and the secret key for the group manager.

– JOIN allows a new user to join the group. The user’s output is a membership
certificate and a membership secret.

– SIGN(m), given GPK, a membership certificate and secret, and a message
m, outputs a group signature on m.

– VERIFY establishes the validity of an alleged group signature σ on message
m with respect to GPK.

– OPEN given a message m with valid group signature σ, the key GPK and the
group manager’s secret key, determines the identity of the signer.

Selectively Traceable Anonymity 211

Group signature schemes must satisfy a variety of properties. Signatures pro-
duced using SIGN must be accepted using VERIFY, for example, and the actual
signer of a message should remain anonymous until the signature is opened by
the group manager. For more details, see [3].

Many group signature schemes (e.g., [3,20]) implement OPEN as an instance
of El Gamal decryption. In these schemes the group manager can be distributed
so that each instance of OPEN operates according to a threshold scheme.

3 Selective Traceability

Tracing, like anonymity, may be abused. Accordingly, we want to avoid any re-
quirements that tracing information be logged or enforaced by any single, central
authority, since in many cases the primary reason for having an anonymity pro-
tocol is to provide protection against central authorities. To describe a general
framework for traceable schemes, it will therefore be important to specify who
is able to trace. The setting we consider is as follows: there is a finite set G of
users who may be able to send or receive messages anonymously, and there is a
finite set V of voters who are authorized to trace a message. There is also a set
V ⊆ 2V , the tracing policy, such that an act of tracing only occurs when all the
members of a tracing set T ∈ V agree to it. (We assume that V is monotone,
so that if T ∈ V and T ⊆ T ′, then T ′ ∈ V . It therefore suffices to consider only
the minimal sets in V .) We call (G, V,V) a tracing scheme. Some examples of
tracing policies include:

1. The trivial tracing policy, in which explicit tracing by voters is not allowed,
can be represented with V = ∅. (For many protocols, a sufficiently large
subset of the users of a system can cooperate to trace messages; but this is
an implicit process, rather than one enforced by the protocol.)

2. Given V and an integer 1 ≤ t ≤ |V |, let V(t) = {R ⊆ V | |R| = t}. V(t) is a
threshold tracing policy, with parameter t. Tracing occurs only when at least
t members of V agree that tracing should occur.

3. Let V be the set of n members of a legislative body (e.g., the US Senate’s 100
members or the UK House of Commons’ 646 members); then V(�n/2�+ 1)
is the policy that says a legislative act is required to trace a message.

We note that there is a close relationship between the tracing scheme V of a
selectively traceable anonymity protocol and the “trust model” of any anonymity
protocol. In particular, when a static set of nodes must be trusted not to reveal
the sender of all messages, it is clear that the tracing policy must include this
subset as an element. On the other hand, a tracing policy explicitly specifies sets
of voters (not necessarily participants) who may trace a message regardless of
its origin or destination; a participant must therefore trust these sets of voters.
In the case of a tracing policy, however, these sets are always static, and always
have the power to trace a message; in many existing anonymity protocols, the set
of nodes that can trace any particular message varies by message. Thus “trust
models” are mostly a side-effect of the protocols employed by some anonymous

212 L. von Ahn et al.

communication schemes, whereas tracing policies are conscious decisions to allow
tracing the anonymity of a message.

3.1 Generic Transformations

In this section we present a method to convert a generic anonymous communi-
cation protocol to a new protocol that permits selective tracing. We assume that
there is an independent set V of voters and a threshold tracing policy V ⊆ 2V .
(We remark that any monotone tracing policy may be implemented using our
method, though in the worst case the length of the shares may be exponential
in the size of the voting set. Here we focus only on the threshold case.) We do
not assume anything about the voters except that they can be trusted with a
secret share of the El Gamal private key that will be used for decryption. The
voters may be principals in the original anonymous communication scheme, but
this isn’t a necessary requirement. For this work, we make the simplifying as-
sumption that a group manager enforces some binding between a user’s identity
in the JOIN protocol and that user’s physical identity.

LetM be the set of possible anonymous messages, which are generated by one
party to be processed for anonymous delivery to another party, and let PM be
the set of protocol messages, which are exchanged by parties during the execution
of the protocol. Our generic transformation applies to protocols that include a
finite number of parties {P1, . . . , Pn} and include the primitive operations SEND,
PROCESS, and RECOVER, which we now describe. (These operations use a set of
public parameters selected by an initial setup stage, and each player Pi may use
his secret parameters Si in any stage):

– SEND: a procedure executed by Pi that takes as input an anonymous message
m ∈ M and a recipient Pj , and outputs a list c of pairs (ci,j , Pj) where ci,j

is a protocol message to be sent to Pj .
– PROCESS: a procedure executed by Pj that takes as input a list of pairs

(ci,j , Pi), where the ci,j are protocol messages received from Pi, and outputs
a new list c′ of pairs (c′j,k, P ′

k) where c′j,k is a protocol message to be sent
to P ′

k. (We remark that there may be several rounds of PROCESS operations
during a single execution of the protocol.)

– RECOVER: a procedure executed by Pj that takes as input a list c (or multiple
vectors) of pairs (ci,j , Pi), where the ci,j are protocol messages received from
Pi, and outputs a list of pairs (mk, P ′

k) where each mk is an anonymous
message to send to P ′

k.

All well-known anonymity protocols in the security literature implement vari-
ants of these protocols. With mixes and onion-routing protocols, for example, a
PROCESS step takes a batch of protocol messages and shuffles and forwards them
along to other parties, possibly after performing some operation on the messages
such as encryption and/or decryption.

Transformation 1: The first transformation we consider (already mentioned in
[20]) affects the SEND and RECOVER steps of a given protocol. In the new protocol

Selectively Traceable Anonymity 213

the sender Pi must sign the message m ∈M to get a group signature σ, and the
resulting message m′ = (m, σ) is the one that must be processed by the SEND
operation. For any party Pj executing a RECOVER operation to recover a message
m, Pj must ensure that m has been signed using a group signature and must
discard the message if it has not been signed.

If a receiver Pk presents an anonymous message to the voting group V for
tracing, a tracing set T ∈ V may open the signature to reveal the sender.

A significant problem with Transformation 1 is that nothing stops the party
Pj executing RECOVER from reading a recovered unsigned message, or sending it
on to its intended recipient — regardless of whether Pj is simply curious or is
attempting to subvert the tracing scheme. As soon as unsigned messages are read
instead of dropped, senders have no incentive to sign messages that they may
later be blamed for, and the system degrades into a non-traceable protocol. Of
course one could appoint a trusted “auditor” to check that all messages are signed
before delivery but this would both have the effect of severely degrading the
anonymity of the system (the auditor sees ALL messages delivered!) and would
create a single point of failure for the anonymity protocol; we seek a solution
that violates anonymity for traceability only to the extent that it enforces the
tracing policy.

Transformation 2: In most anonymity protocols, the PROCESS step involves
protocol messages from which the original anonymous message m cannot be
efficiently recovered by the party executing the step. The message may be en-
crypted, for example, or split into shares using some secret-sharing scheme. (One
exception to this is the Crowds framework [23], where messages may be sent
in plaintext. Protocol participants essentially flip a coin to decide whether to
execute a PROCESS or a RECOVER operation, and they can see the anonymous
messages at every step.) The transformation we outline below may be applied
whenever it is impossible or computationally infeasible to recover m from the
PROCESS step.

Our solution to the game-theoretic problem of Transformation 1 is to require
that an agent Pj executing a PROCESS step must check that the protocol messages
c1,j , . . . , cn,j are all generated from underlying anonymous messages that have
been signed using the group signature scheme. To do this without revealing
anything about the underlying message, we use noninteractive zero-knowledge
(NIZK) proofs [5]; briefly, these are objects that prove the truth of a statement
without revealing anything about the proof. Essentially, we define valid protocol
messages to be those that are the output of SEND on a signed-message, or PROCESS
on a set of valid messages; then modify the SEND procedure to output of NIZK
of validity, and modify the PROCESS procedure to verify the validity of all inputs
and output a NIZK of the validity of its outputs. Full details appear in [2].

Efficiency. We stress that the point of this general scheme is not to suggest
a protocol that should be used in practice, but to show that in principle, any
anonymity scheme can provide selective traceability. Indeed, the most efficient
general constructions of NIZKs [17] have length roughly 6000T bits, where T

214 L. von Ahn et al.

is the number of bit operations required to verify that x ∈ L given witness w.
Since in the previous transformation, this involves (at minimum) verifying a
group signature or checking a NIZK, and the most efficient such signatures re-
quire roughly T = 106 bit operations per verification, the generic transformation
cannot be considered practical.

3.2 More Efficient Transformations

In this section, we will demonstrate simple modifications to allow selective trac-
ing of two DC-Net-based protocols: k-AMT [1] and a protocol due to Golle and
Juels [15] which we refer to as GJ. Both protocols make slight alterations to
the basic DC-Net protocol [10] to implement a shared channel; these modified
protocols are then run in several parallel copies, and cryptographic mechanisms
are employed to prove that each participant broadcasts on at most one channel,
ensuring fair access to the medium. Our approach considers the messages sent
on each channel orthogonally and allows determining who has broadcast on a
single channel, so for ease of exposition we will describe the protocols here only
in terms of a single shared channel.

k-AMT. The k-AMT protocol implements a shared channel as a secure mul-
tiparty sum computation, using Pedersen commitments4 to ensure correctness.
Here we assume that player Pi wants to send message Xi. The basic protocol
has four phases:

1. Commitment Phase
– Pi splits Xi ∈ Zq into n random shares si,1, ..., si,n, and chooses ri,j ← Zq

– Pi computes and broadcasts commitments {Ci,j = Cri,j (si,j) : 1 ≤ j ≤ n}.
2. Sharing Phase

– For each j 	= i, Pi −→ Pj : (ri,j , si,j).
– Pj checks that Cri,j (si,j) = Ci,j

3. Broadcast Phase
– Pi computes and broadcasts Ri =

∑
j rj,i mod q and Si =

∑
j sj,i mod q.

– All players check that CRi(Si) =
∏

j Cj,i mod p
4. Result. Each player computes X =

∑
i Si mod q and R =

∑
i Ri mod q; if

CR(X) =
∏

i,j Ci,j mod p, the player outputs the anonymous message X .

As was previously mentioned, k-AMT actually runs several parallel copies of
this protocol and includes procedures for proving that a party has transmitted
on at most one parallel channel or “slot.” Here we will describe how to augment
the basic protocol so that it is selectively traceable. It should be clear that these
modifications are orthogonal to those additional procedures.

The new protocol exploits the relationship between El Gamal encryption and
Pedersen commitments to allow the voters to “decrypt” the commitments gen-
erated in Phase 1 (when the tracing policy is satisfied). Here we describe the
necessary modifications.
4 If p, q are primes such that p = 2q + 1, and g, h ∈ Z

∗
p both have order q, a Pedersen

commitment to the value x ∈ Zq is generated by randomly choosing r ∈ Zq and
computing Cr(x) = gxhr.

Selectively Traceable Anonymity 215

1. Initialization: As a group, choose securely an El Gamal key pair (G, x, y)
where y = Gx, such that the private key x is shared by threshold secret
sharing according to the desired tracing policy, as in Section 2.

2. Commitment Phase: In addition to the {Ci,j : j ∈ [M]} commitments
broadcast by party Pi, we will have Pi broadcast a certificate that can be
proven correct for a given set of commitments, but can only be opened by
the owner of the private key of the El Gamal encryption scheme above.
Assuming that a round of k-AMT is correctly computed, we are guaranteed
that Si =

∏
j Ci,j = gXihRi , where Ri =

∑
j ri,j . Let ai = GRi and bi =

g−XiyRi . Together, ai and bi form an El Gamal encryption of g−Xi with the
public key y.

Finally, we compute σi to be an efficient noninteractive proof of knowledge
that the discrete log of ai with respect to base G is the same as the discrete
log of Sibi with respect to base hy. The certificate broadcast in addition to
the commitments is just (ai, bi, σi).

Now, to trace a message: identify the slot that it was transmitted on, obtain a
number of parties as required by the tracing policy, and securely compute the
decryption M of each party’s certificate for that slot. For all participants who
sent nothing on the channel we have Xi = 0, and thus M = g−Xi = 1. All other
participants transmitted something on the channel, and in particular if only one
participant i sent a message we have X = Xi, and thus M · gX = 1.

To compute σi, we want to show that logG ai = loghy Sibi. In general, to prove
that logg y = logh z when logg h is unknown and hard to compute, it suffices to
prove knowledge of logg/h(y/z). (If there exists a such that y = ga and z = ha,
then because gaz = hay we have logg/h(y/z) = a. If y = ga and z = hb, with
a 	= b, then knowledge of logg/h(y/z) can easily be used to compute logg h.)
Therefore, σi is a noninteractive proof of knowledge of logG/hy(ai/Sibi), and can
be computed efficiently using standard techniques.5 Note that this modification
doesn’t affect the asymptotic efficiency of the underlying protocol.

We prove in [2] that under the Decisional Diffie-Hellman assumption, the pro-
tocol remains secure against computationally bounded adversaries that have not
corrupted a tracing set.

The GJ DC-Net Protocol. The GJ DC-Net protocol takes advantage of bi-
linear maps to perform many Diffie-Hellman key exchanges noninteractively,
thus achieving a single-round (noninteractive) DC-net protocol. The protocol
works over groups G1, G2 of prime order q, and with an admissible bilinear map
ê : G1 × G1 → G2. (A map is bilinear if ê(aP, bP) = ê(P, P)ab.) We denote
the group operation in G1 using additive notation, and the group operation in
G2 using multiplicative notation, as is common when dealing with admissible

5 In the random oracle model, a proof of knowledge of α = logγ β has the form
(ζ = γρ, λ = αH(ζ) + ρ), where ρ ∈R Zq and H : Z

∗
p → Zq is a random oracle; the

proof is accepted if γλ = βH(ζ)ζ; interactive versions of this protocol first appear in
[11].

216 L. von Ahn et al.

bilinear maps. (G1 is typically an elliptic curve group.) We let P ∈ G1 be a
public parameter and assume all parties know a map H : {0, 1}∗ → G1, which
we will model as a random oracle. As previously mentioned, the GJ protocol
is actually comprised of several parallel executions of a simple shared channel
along with some auxiliary information that proves a player has transmitted on at
most one channel; for simplicity, and because our modifications are orthogonal,
we describe only the single channel and omit the auxiliary information. For a
description of the full protocol, see [15].

1. Setup Phase: Every player Pi picks private key xi ∈ Zq and publishes
yi = xiP as his public key.

2. Pad Construction: Let s be some unique identifier of a particular execution
of the shared channel. (For example, a running count appended to the list of
users). All players compute the element Qs ∈ G1 as Qs = H(s). Then each
pair of players (noninteractively) computes a shared Diffie-Hellman key

ki,j(s) = ê(yj , xiQs) = ê(P, Qs)xixj = ê(yi, xjQs) = kj,i(s) .

Each player i computes his “pad” pi(s) =
∏

j ki,j(s)δi,j , where δi,j = −1 if
i < j and 1 otherwise.

3. Transmission: In session s, we let the intended message of Pi be the element
mi(s) ∈ G2, where mi(s) is the identity element 1 ∈ G2 if Pi has no message
to send. To transmit, each player Pi publishes value Wi(s) = mi(s)pi(s).

4. Message Extraction: The final message is extracted by computing

m(s) =
∏

i

Wi(s) =
∏

i

mi(s)
∏

j

ki,j(s)δi,j =
∏

i

mi(s) ,

since ki,j(s)δi,j = kj,i(s)−δj,i . Thus if exactly one mi(s) 	= 1, then we have
m(s) = mi(s).

To support selective tracing, the only modification to the previous procedures
is in the setup phase: after generating key pair (xi, yi) and publishing yi, player
Pi will share his private key xi among the voters in a similar fashion to that
described in section 2. Then to trace the message m(s), the voters will compute
the pads pi(s) for each i using their shares. If the published value Wi(s) =
m(s)pi(s), then Pi is the sender. We formally describe the new procedures in [2].
We note that in the full GJ protocol [15] shares of the private keys xi are dis-
tributed amongst the players to allow any two-thirds of them to reconstruct the
pads of players who do not participate in any given session. So, even though this
is done for different reasons, the GJ protocol silently implements a threshold
tracing scheme, with V = {P1, . . . , Pn} and V = V(2n

3).

4 Coercibility in Anonymous Protocols

Informally, we say that an anonymity protocol is coercible if every player who
did not send a message can produce a proof that this is the case. More formally,

Selectively Traceable Anonymity 217

consider a “proof protocol” P between a player Pi and a verifier V , where the
difference in the probabilities that V “accepts the proof” when Pi sent the
message and Pi did not send the message is at least some value ρP . We call
a protocol ρ-coercible if, over all P, ρ = max(ρP). In other words, ρ measures
the confidence of the best proof procedure. If a protocol is 1-coercible, only the
legitimate sender of a message cannot exculpate himself (but everybody else
can); if a protocol is 0-coercible the verifier should not believe any proofs. If ε
is negligible, we say that a protocol that is (1− ε)-coercible is strongly coercible,
and that a protocol that is at most ε-coercible is noncoercible. If a protocol is
ρ-coercible for some constant ρ, we say that it is plausibly noncoercible.

In this section we assume that all the players in the protocol Π are plausible
senders of any message m. Assuming that all the players belong to the same
“anonymity set” (i.e., the set of players who could have sent a particular message)
lets us ignore “proofs of innocence” that can arise simply because two players
belong to different anonymity sets.

Formally, for an anonymous communications protocol Π we define coercibility
as follows:

– A proof procedure P is a pair (P ,V) of programs such that V outputs either
acc (for accept) or rej (for reject). (Intuitively, P can be thought of as a
program that is run by some player Pi.)

– After the public parameters of Π are chosen, V is allowed to choose a message
m as a function of the parameters. This is the message that, if sent during
an execution of the protocol, V will ask players in Π to prove they have not
sent.

– Let viewX(Pj : m) denote the view of party X in the anonymity protocol Π
when Pj sends message m and m is delivered. The view includes X ’s inputs
(including random tape) and any protocol messages sent and received during
the execution of Π .

– Let A denote any adversary who cannot compromise the anonymity guaran-
tee of Π . For any player X , denote by viewA(X : m) the views of all parties
corrupted by A as well as all protocol messages from Π that A observes.
Essentially, A will serve as V ’s agent in Π : we allow the verifier access to A’s
view of Π to help in deciding whether to accept P ’s proof that Pi didn’t send
m. Denote by Pi(X : m) the output of V (on input m and viewA(X : m))
when interacting with P (on input m and viewPi(X : m)).

– We say that Π is ρ-coercible if there is a proof procedure P, an adversary A,
and players Pi and Pj such that

|Pr[Pi(Pj : m) = acc]− Pr[Pi(Pi : m) = acc]| ≥ ρ ,

regardless of Pi’s actions in the second case.

Notice that this definition is weak in the sense that the verifier is allowed to
choose the message. In other words, the protocol is coercible if there exists a
message and adversary such that some player can prove that she did not send
the message. (This makes noncoercibility a stronger definition, because it rules

218 L. von Ahn et al.

out any convincing proofs of innocence.) As we will demonstrate, the coercibility
of several protocols from the literature is much stronger — and therefore more
problematic — because it allows any player to prove she is not the sender of any
message she did not send.

Coercibility for group signature schemes can be defined analogously. We re-
mark that noncoercibility of group signatures satisfying the security definitions
of [4] is implied by the “full anonymity” condition.

Recently, Danezis and Clulow [13] have introduced the notion of compulsion-
resistant anonymity protocols. In their setting, an adversary may compel certain
noncooperative nodes to reveal their secrets (via, for example decrypting cipher-
texts or revealing logs or secret keys) in an attempt to trace a message back
to its sender. Noncoercibility and compulsion-resistance are related in that both
concern the ability of an adversary to trace a message after it has been sent. Our
notion is different from compulsion-resistance in several ways. First, a coercive
adversary is given a complete transcript of a protocol execution, whereas the per-
haps more realistic (but weaker) “compulsive” adversary has only an anonymous
reply block. Second, our constructions consider mainly DC-Net based protocols
whereas [13] is concerned mainly with mix-based protocols. Finally, the goals of
noncoercibility and compulsion-resistance differ somewhat: a noncoercible pro-
tocol aims to make compulsory revelation of secrets useless because no such rev-
elation will convincingly exonerate a nonsender, whereas a compulsion-resistant
protocol aims to make such compulsory tracing prohibitively expensive.

4.1 Coercibility in Various Anonymity Protocols

In the simplest formulation of Chaum’s mix-net protocol [9], each party sends a
message to the mix, who decrypts and shuffles the messages before forwarding
them to the recipients. This protocol is clearly coercible against a global passive
adversary: if Pi sent ciphertext ci to the mix, and ci does not decrypt to m,
he can open ci to plaintext pi 	= m to the verifier. The true sender, on the
other hand, cannot. It is similarly clear that, in the worst case, any forwarding-
based scheme which relies on static public or shared keys allows similar acts of
exculpation to a global passive adversary: by decrypting all received ciphertexts
and opening all sent ciphertexts, Pi can prove that he was not the originator of
any message he did not send. Clearly some players will be reluctant to sacrifice
their anonymity entirely in order to give such proofs. It is conceivable, however,
that the consequences of non-exculpation could be serious enough that such a
privacy loss would be acceptable to Pi. In this work we leave open the interesting
question whether such forwarding-based protocols remain coercible in settings
that employ forward-security or against different adversarial models.

In Section 3.2 we focused on selective tracing in protocols based on DC-Nets,
in part because of the reliance of those protocols on cryptographic techniques
that are amenable to tracing. For similar reasons, both of those protocols are co-
ercible. Here we show how participants in those protocols are able to prove easily
that they did not send particular messages that were sent by other participants
during an execution of the protocol.

Selectively Traceable Anonymity 219

In a GJ DC-Net, player Pi can prove that he didn’t send a message during
session s by publishing the quantity zi(s) = xiQs. (Note that zi(s) doesn’t
reveal anything about Pi’s private key xi.) From zi(s), Pi’s pad pi(s) can be
publicly computed as pi(s) =

∏
j ki,j(s)δi,j =

∏
j ê(yj , zi(s))δi,j . Wi(s) — the

value publically declared by Pi — will be the same as pi(s) if and only if Pi did
not send the message.

In k-AMT, player Pi broadcasts commitments Ci,j = Cri,j (si,j) of the random
shares si,1, ..., si,n broadcast to the other players when Pi sends message Xi.
If Pi wants to prove that she did not send a message, i.e., that Xi = 0, she
needs only to open the commitments Ci,j by announcing the shares si,j and the
random values ri,j . (Opening a commitment Ci,j to some value s′i,j 	= si,j is as
computationally hard as computing logg(h), where g and h are the generators
used in the commitment scheme.) Other users can easily check that

∑
j si,j = 0,

thus proving that Pi did not send the message in question.
We note, however, that k-AMT can be modified to be noncoercible. The key

idea is that when logg h is known, a player can open a commitment to any
value (Pedersen commitments are thus equivocable), and in particular can show
that his commitments sum to zero, even if they do not. We can thus modify
the k-AMT protocol to start each round by choosing a new h so that logg h is
uniformly chosen and can be recovered exactly when 2n/3 players reveal their
secret information; each round continues as before, and at the end of each round
logg h is revealed. We note that Pedersen [22] gives an appropriate protocol for
choosing h with these properties. We also note that this modification to k-AMT
is incompatible with the tracing modification of Section 3.2. Thus, while applying
the generic transformation to this modification of k-AMT can result in a strong
selectively traceable protocol, no efficient construction is known.

4.2 Coercibility Preservation

Here we show that the general transformations in Section 3 preserve (up to
a negligible additive factor) the coercibility of the underlying (non-traceable)
anonymous communications protocol, given that the selected group signature
scheme is noncoercible. That is, we will show that any proof system that has
an acceptance gap of ρ in the transformed protocol can be converted into a
proof system with acceptance gap at least ρ− μ for the underlying anonymous
protocol if the group signature scheme is at most μ-coercible. This implies that
using a noncoercible anonymous protocol will result in a noncoercible selectively
traceable protocol.

Group Signature transformation. Let Π denote an anonymous commu-
nication protocol and let Π∗ denote the protocol that results from applying
Transformation 1 to Π . Suppose that Π∗ is ρ-coercible and that the group sig-
nature scheme GS used in the transformation is at most μ-coercible. Then there
must be a proof procedure P

∗ = (P∗,V∗) for Π∗ with acceptance gap ρ, for some
adversary A∗ and a pair of players Pi and Pj . We construct a proof procedure P

for Π , which “simulates” the group signature part of Π∗ so that it can run P
∗:

220 L. von Ahn et al.

– On input the public parameters from Π , V plays the role of the group man-
ager in GS to pick a group public key GPK. V appends GPK to the param-
eters (producing a set of public parameters consistent with Π∗) and runs
V∗ to choose a message m∗. V computes a signing key for Pj and computes
σ∗ = SIGNj(m∗). V also chooses the message m = (m∗, σ∗).

– V and P jointly execute the JOIN protocol from GS to produce Pi’s signing
key. This is so that when P runs P∗ he can supply a transcript of the JOIN
protocol. (Note however, that if Pi sends m in Π , this view will be slightly
different than if Pi sent m∗ in Π∗, because m is signed by Pj . We prove,
essentially, that the noncoercibility of GS means that this doesn’t matter for
the acceptance probabilities.)

– V appends GPK and σ∗ to his input viewA to form a view view∗
A consistent

with Π∗. Similarly, P appends GPK and his signing key and σ∗ to viewi to
form a view view∗

i consistent with Π∗.
– V executes V∗(m∗, view∗

A), and P executes P∗(m∗, view∗
i).

– P proves in zero-knowledge that his actions are consistent with the extra
inputs computed with V . If this proof fails, or P aborts the protocol, V
outputs rej . Otherwise V outputs the decision of V∗. This prevents P from
cheating (using different inputs) to increase the acceptance probability.

Let us compute the acceptance gap of P. To do so, we will imagine an experiment
in which Π∗ delivers m∗ with a group signature from either Pi or Pj . Denote
the event that Pi’s signing key is used by Si, and the event that Pj ’s key is used
by Sj . Then we have that:

ρ ≤ |Pr[P∗
i (Pi : m) = acc | Si]− Pr[P∗

i (Pj : m) = acc | Sj]|
≤ |Pr[P∗

i (Pi : m) = acc | Si]− Pr[P∗
i (Pi : m) = acc | Sj]|

+ |Pr[P∗
i (Pi : m) = acc | Sj]− Pr[P∗

i (Pj : m) = acc | Sj]|
= |Pr[P∗

i (Pi : m) = acc | Si]− Pr[P∗
i (Pi : m) = acc | Sj]|

+ |Pr[Pi(Pi : m) = acc]− Pr[Pi(Pj : m) = acc]|
≤ μ + |Pr[Pi(Pi : m) = acc]− Pr[Pi(Pj : m) = acc]|

where the second line follows by the triangle inequality, the third follows from the
definition of the proof procedure P — it is running P

∗ exactly in the (imaginary)
case that Sj happens — and the last follows because GS is at most μ-coercible.6

Thus we have that

|Pr[Pi(Pi : m) = acc]− Pr[Pi(Pj : m) = acc]| ≥ ρ− μ .

6 Suppose that |Pr[P∗
i (Pi : m) = acc | Si] − Pr[P∗

i (Pi : m) = acc | Sj]| > μ. Then
P gives a way for Pi to prove that he did not generate the group signature σ∗ with
acceptance gap greater than μ: V and P run Π∗ together, with V playing the roles
of other parties, and P sends m∗ using the group signature σ∗. Then they run P on
their views of this execution; the acceptance gap will be preserved.

Selectively Traceable Anonymity 221

NIZK transformation. Let Π denote an anonymous communication protocol
that results from applying Transformation 1, and let Π∗ denote the result of
applying Transformation 2 to Π , that is, adding the NIZK proofs to the proto-
col. We also show that if Π∗ is ρ-coercible then Π is at least ρ− ε coercible, for
a negligible function ε. Informally, this is because NIZK proofs are simulatable:
a party who can choose the common reference string used for the proof can,
without a witness, produce simulated proofs that are indistinguishable from ac-
cepting proofs. Because both P and V may need to generate proofs on strings
that the other has not seen, they will use a secure two-party computation pro-
tocol [26] to generate the CRS and any simulated proofs so that neither learns
anything about the CRS except the proofs they need to emulate Π∗. The formal
proof appears in [2].

5 Conclusion

In this paper we have discussed selective tracing and coercibility as two issues
that designers of anonymity protocols should bear in mind. We have described a
framework for describing tracing policies that we believe to be general enough to
capture most situations where fair and sensible tracing policies are desired. We
have shown that, in principle, strong selectively traceable anonymity schemes
for any tracing policy can be implemented by modifying a recent protocol of [1].

Extending this work to protocols based on mixes is one possible direction
for future work. Our proposed “Transformation 2” (in Section 3) is extremely
inefficient in both space and time — more efficient transformations that apply
to specific protocols (or at least to mix-style protocols) are highly desirable.

We are not advocating anonymity tracing as a necessary feature of anonymity
protocols, but rather suggesting that any tracing — whether implicit (e.g., co-
ercible protocols) or explicit — should be examined carefully so that system
designers can make more specific anonymity guarantees. While it is rarely a
good idea to have tracing possible by the action of a single trusted authority, it
may be easier to deploy an anonymity protocol in some contexts if it includes
some tracing functionality. To that end, we want to develop systems that pro-
vide flexible tracing policies that are less likely to be abused. Finally, the issue
of traceable anonymity presents interesting technical problems that may help to
further the goals of anonymity research. We hope that this will be the case.

Acknowledgments. The authors thank Roger Dingledine, Joe Halpern, Yong-
dae Kim, Nick Matthewson, David Molnar, Hovav Shacham, Gun S̈ırer, the
attendees of the Stanford Security Lunch and the Minnesota Security and Cryp-
tography Seminar, and several anonymous referees for helpful discussions and
comments. This work was supported by the US National Science Foundation un-
der grants CCR-0122581, CCR-0058982, and CNS-0546162, and the US Army
Research Office and the CyLab Center at Carnegie Mellon University.

222 L. von Ahn et al.

References

1. L. von Ahn, A. Bortz, and N. J. Hopper. k-anonymous message transmission. In
10th Conference on Computer and Communications Security, pp. 122–130, 2003.

2. L. von Ahn, A. Bortz, N. J. Hopper, and K. O’Neill. Selectively Traceable
Anonymity. Minnesota Digital Technology Center Research Report 2006/14, June
2006. URL: http://dtc.umn.edu/publications/reports/2006 14.pdf.

3. G. Ateniese, J. Camenisch, M. Joye and G. Tsudik. A Practical and Provably
Secure Coalition-Resistant Group Signature Scheme. CRYPTO 2000, pp. 255–270.

4. M. Bellare, D. Micciancio and B. Warinschi. Foundations of Group Signatures. In
Eurocrypt 2003, (LNCS 2656), pp. 614–629.

5. M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive Zero-Knowledge
Proof Systems. SIAM Journal on Computation, 20(6): 1084–1118, 1991.

6. D. Boneh. The Decision Diffie-Hellman Problem. Proc. 3rd ANTS, pp 48–63, 1998.
7. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable Encryption. In

CRYPTO 97, pp. 90–104.
8. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multiparty

Computation. MIT LCS Technical Reports TR96-682, 1996.
9. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

In Communications of the ACM 4(2), February 1981.
10. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient

untraceability. Journal of Cryptology, 1(1):65–75, 1988.
11. D. Chaum, J. Evertse, J. van de Graaf and R. Peralta. Demonstrating Possession

of a Discrete Logarithm Without Revealing It. In CRYPTO’86, pp. 200–212.
12. D. Chaum and E. van Heyst. Group Signatures. In EUROCRYPT ’91, pp. 257–265.
13. G. Danezis and J. Clulow. Compulsion Resistant Anonymous Communications. In

7th Information Hiding Workshop, June 2005.
14. Y. Dodis, A. Kiayias, A. Nicolosi and V. Shoup. Anonymous Identification in

Ad-Hoc Groups. In EUROCRYPT ’04.
15. P. Golle and A. Juels. Dining Cryptographers Revisited. In EUROCRYPT ’04.
16. T.C. Greene. Net anonymity service back-doored. The Register, 21 August, 2003.
17. J. Groth, R. Ostrovsky and A. Sahai. Perfect Non-Interactive Zero Knowledge for

NP. Electronic Colloquium on Computational Complexity report TR05-097, 2005.
18. A. Juels and. M. Jakobsson. Coercion-Resistant Electronic Elections. Cryptology

ePrint Archive Report 2002/165, 2002.
19. J. Katz and M. Yung. Threshold Cryptosystems Based on Factoring. In Asiacrypt

2002, pp. 192–205.
20. A. Kiayias, Y. Tsiounis and M. Yung. Traceable Signatures.

In: Advances in Cryptology – Eurocrypt 2004, 2004.
21. T.P. Pedersen. A threshold cryptosystem without a trusted party. In Eurocrypt

’91, pp.522–526.
22. T.P. Pedersen. Efficient and information theoretic secure verifiable secret sharing.

In CRYPTO ’91.
23. M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM Trans-

actions on Information and System Security, 1(1):66–92, 1998.
24. A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.
25. V. Shoup. Practical Threshold Signatures. In Eurocrypt 2000.
26. A. C. Yao. How to Generate and Exchange Secrets. In Proc. 27th IEEE FOCS,

pp. 162–167, 1986.

http://dtc.umn.edu/publications/reports/2006_14.pdf

	Introduction
	Threshold Cryptography and Group Signatures
	Selective Traceability
	Generic Transformations
	More Efficient Transformations

	Coercibility in Anonymous Protocols
	Coercibility in Various Anonymity Protocols
	Coercibility Preservation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

